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An Analysis of a Superconvergence Result 
for a Singularly Perturbed 
Boundary Value Problem* 

By Eugene O'Riordan and Martin Stynes 

Abstract. We give a new proof that the El-Mistikawy and Werle finite-difference scheme is 
uniformly second-order accurate for a nonselfadjoint singularly perturbed boundary value 
problem. To do this, we use exponential finite elements and a discretized Green's function. 
The proof is direct, gives the nodal errors explicitly in integral form, and involves much less 
computation than in previous proofs of the result. 

1. Introduction. In this paper we consider the nonselfadjoint singularly perturbed 
boundary value problem 

L u--u" + au'= f on (O, 1), 
(1.1) u(O) = UO, u(1) = ul, 

where the functions a and f are in C2[0, 1], a(x) > a > 0 on [0, 1], E is a parameter 
in (0, 1], a and f do not depend on e, and uo, ul are fixed constants. Under these 
assumptions, (1.1) has a unique solution u(x). This solution has, in general, a 
boundary layer at x = 0 for E near 0. 

A difference scheme for solving (1.1) on a uniform mesh in [0, 1] was proposed in 
El-Mistikawy and Werle [2]. In Berger et al. [1] and Hegarty et al. [4] two 
independent proofs were given that the El-Mistikawy and Werle scheme was 
uniformly second-order accurate (that is, all nodal errors are bounded by Ch 2, where 
the constant C is independent of x, h and e). Although these proofs differ greatly in 
their details, both use finite-difference techniques and involve large amounts of 
computation and estimation. 

We give below a new proof of the uniform second-order accuracy of the El-Mis- 
tikawy and Werle scheme. An outline of the proof was given in Stynes and 
O'Riordan [11]. It has previously been shown by O'Riordan [8], [9] that a certain 
choice of finite elements together with a nonstandard quadrature rule generate the 
scheme. Thus the problem of proving the accuracy of the scheme can be approached 
from a finite-element viewpoint. The key to the proof is the introduction of a 
"discretized Green's function" associated with a modified version of (1.1), obtained 
by replacing the functions a and f by piecewise constant approximations. The nodal 
errors are then easily expressed explicitly as integrals involving the discretized 
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Green's function (see Section 4). Most of these integrals are seen almost immediately 
to be bounded by Ch 2, and we are left with the problem of estimating a single 
integral involving the boundary-layer term from an asymptotic expansion of u. 
Some computation is necessary to bound this integral, but it is very much less than 
the difficulties involved in the finite-difference proofs of the result. 

With a natural choice of trial functions the Petrov-Galerkin finite-element method 
used here is globally uniformly first-order accurate, as shown in O'Riordan [8], [9]. 
Thus the bound proven here is a superconvergence result. 

The discretized Green's function technique can readily be applied to other 
singularly perturbed problems. In [12] we use it to prove that a certain difference 
scheme is uniformly second-order accurate for a conservative nonselfadjoint singu- 
larly perturbed two-point boundary value problem. In fact, as may be seen in [12], 
the discretized Green's function actually suggests (indirectly) a good choice of 
difference scheme for this problem. 

2. Finite-Element Generation of the El-Mistikawy and Werle Scheme. Let N be a 
positive integer and let h = 1/N be the uniform mesh width. The nodes in [0,1] are 
xi= ih, i = 091, ... , N. 

Define the piecewise constant approximation a(x) of a(x) on [0, 1] by 

) ai 9 X E [X,_x),i = 1, ... ., N-i, 
a(x) = i 

Ns x E= [XN-1' XN]9 

where 

aj = ax-1) + a (xj))12 frj=1...,N. 
We then take our trial functions { p, }, to satisfy 

Lo>i =eo) + do'= 0 on (xj , xj, ) for j = 0,...9N - 19 

Oi(xj)= Si,j for j = 0,... IN9 

where Si is the Kronecker delta. Thus each pi has its support in one or two 
subintervals. 

The test functions { 4' } N-1 are chosen differently. They are each defined by 

(.); - adk = O on (xj,xj,1) for j = 0 ... ., N - 1, 

(k(xj) 
= Skj for j = 0,..., N. 

Each 4'k has support [xk19Xk+ 1]. These test functions were first introduced by 
Hemker [5]. A number of error estimates obtained using them were presented in de 
Groen and Hemker [3]. 

Define the trial space Sh to be the span of the {pi}, and the test space Th to be 
the span of the { j .} The Petrov-Galerkin approximation in Sh to u(x) is 

N 

u h(x) - E Uh(Xi)(pi(X), X E= [0, 1]- 

i=O 

The u h(xi) are determined in principle from the weak formulation 

(2.2) B (uh,4) = (f4) for all p E Th, 
uh(0) = u0, Uh(1) =U1 
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where 

Be(vw) (v', -w' + aw), v, w E H'(091) 

and 

(vw) = f v(x)w(x) dx, v, w E L2(0 1). 

However, the integrals in (2.2) cannot in general be evaluated exactly, so some 
quadrature rule must be employed. Following O'Riordan [9] we replace the func- 
tions a and f by a- and f respectively, where f is defined analogously to a. The 
integrals can then be evaluated exactly. We now have an approximation uh(x) E 

to u(x) with 
N 

Uh(X) = E Uh(Xi)pi(X)q X E [0,1]. 

i=O 

The Uh(Xi) are determined from 

(2.3) Be(U h,4,) = (1f4i,) for all E E T. 
-h(o) = u0, =h(1) U19 

where 

B(jvw) (v',-w' + dw), v, w E H'(0 1). 
On evaluating (2.3) explicitly, one obtains the El-Mistikawy and Werle difference 

scheme for the Uh(Xi), as shown in O'Riordan [8], [9]. This calculation is easy but 
tedious, so we do not reproduce it here. It is interesting to note that the difference 
scheme generated does not depend on the specific choice of ci made above; one 
merely needs the usual trial function properties that each ci has support [xi-, xij ] 
with oi(xj) = Si j 

For our choice of Sh and Th, it is shown in O'Riordan [9] that Ilu- < Ch 
(here and throughout the paper C denotes a generic constant independent of x, h 
and e). Thus, the bound we prove below, that 

Omaxl u(xi) - -h(Xi) I < Ch2, 

is a superconvergence result. 

3. Discretized Green's Function. For each j E { 1,..., N - 1) we define a dis- 
cretized Green's function G.. Formally it satisfies 

LTG (x) -Gj"(x) 
- 

(a(x)Gj(x))' = 8(x - x1), Gj(O) = G (1) = 0, 

where 8(.) is the Dirac 8-distribution. 
More precisely, Gj is defined by 

(3.1a) Gje C[O,i], 

(3.lb) Gj(O) = Gj(1) = 0, 

(3.1c) Gj" exists and is continuous on [0, 1], where [0, I 

denotes [0, 1]\{xl, ...XN-l} 

(3.1d) eGj"-aG' = 0 on [0,1f, 

(3.1e) lim (eGj) - aGj) - lim (eG - dG) = -ij for i = 1, .. ., N - 1. 
x * Xi x- *Xi 
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Remark. (3.1e) is equivalent to 

(3.2) eG,'(x) - (x) G (x)= d+ 1 on ( x, 1] r, [i If, 

where d = d(j, h, E). Setting x = 0 gives d = -G1'(O). 
Notation. Pa, ah/c, pi -ih/c for i = 1,..., N. 
We note that Lemmas 3.1 and 3.2 are in fact valid for any choice of ai > a, 

i=1,...,N. 

LEMMA 3.1. GjE TE-. 

Proof. We must show that constants ak can be chosen such that 
N-1 

GJ= ? a'k7k 
k=1 

Clearly, (3.1a), (3.1b), (3.1c) and (3.1d) are satisfied for any choice of { ak}. Using 
integration by parts on [xi1,xI] and [xl, xi+ 1] to evaluate Bjoi, G.), one sees from 
(3.le) that the { a/k } must satisfy 

N-1 

(3.3) E akB,(O,4I) = 
8,j for i = 1, ..., N - 1. 

k=1 

But (2.3) may be written as 
N-1 

(3.4) U = (;Jark) fork = 1,.. ., N - 1. 
i=1 

Hence, the matrix of the linear system of equations (3.3) is the transpose of the 
matrix of the linear system (3.4). This latter matrix is the matrix of the El-Mistikawy 
and Werle difference scheme, which is well known to be invertible (see, e.g., Berger 
et al. [1]). Consequently the matrix of (3.3) is invertible, and we are done. 

LEMMA 3.2. Let A(x) = fox a(t) dtfor 0 < x < 1. Then 
(i) 

d&-'exp(A(x)/c)f exp(-J(t)/E) dt, 0 < x < xi 

G -(d + l),-l exp(JA(x)/e)fl exp(-AT(t)/e) dt, x; < x < 1. 

(ii) 

exp(-J(t)/E) 

dt 

flo exp (-A ( t )/1E) dt 

(iii) GJ < 0 on (0,1). 
(iv) G. is strictly decreasing on [0, x1]. 

(v) Gj > -1/a on [0, 1]. 

Proof. Multiplying (3.2) by the integrating factor e- exp(-A(x)/c) and in- 
tegrating from 0 to x (for x < x1) or from x to 1 (for x > x.) yields (i). 

Equating the two formulas of (i) at x = X. gives (ii). 
From (ii), -1 < d < 0, and then (i) yields (iii) immediately. 
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Note that (Gj(x) exp(-A(x)/e))' = de exp(-A(x)/c) on [0, x1] rn [0, 1] Hence, 

Gj(x) exp(-A(x)/c) is strictly decreasing on [0, xj]. But on (0, x1), G. < 0 and 
exp(-A(x)/c) > 0 is strictly decreasing. This implies (iv). 

For (v) suppose that Gj(z) < -1/a, where z E [xi-, xi] for some i. Then (with 
appropriate modifications if z is a node) 

'() - () + ( d Iif i 6jJ 

< d (by choice of z) 

< 0. 

It follows that Gj is strictly decreasing on [z, xi]. Hence, Gj(xi) < -1/a, and the 
above argument can be repeated on successive intervals until we obtain Gj(1) < -1/a, 
contradicting Gj(l) = 0. 

The next lemma is a technical result needed only to prove Lemma 3.4. Both of 
these lemmas remain valid for any choice of a satisfying ai >x a and dl. - ai - i < Ch, 
i= 1,...,N. 

LEMMA 3.3. Forj < i < N, 

N-i-1 

jaiG1(xi) + d + I| < C exp(-(N - i) p) + h ? exp(-kpa)). 
k=O 

Proof. For j < i < N, 

EGj'(x) - aiGj(x) = d + 1 on (xi-, x1) 

Thus, 

(3.5) (Gj(x) exp(-aix/c))' = r-1(d + 1) exp(-aix/c) on (xi-, xi). 

Integrating this from x = xi1 to x = x1 and dividing by exp(-aixi~1/) yields 

(3.6) Gj(xi) exp(-pi) - Gj(xi1) = (d + 1)(1 - exp(-pi))/ai. 

We now use induction on i to prove the lemma. 
For i = N the lemma holds since Id + 11 < 1 by Lemma 3.2(ii). 
Assume that the lemma holds for some i with j < i < N. We deduce that it also 

holds for i - 1: 

a _jGj(xij + d + 1 = (ai1 - ai)Gj(xi~) + diG1(xi.1) + d + 1 

(ai-1 - ai)Gj(xi-1) + (aJiG(xi) + d + 1) exp(-pi), by (3.6). 

By the inductive hypothesis and Lemma 3.2, parts (iii) and (v) 

jaiGj(xi_) + d + 1i 
N-i-i 

6 C h + exp(-pa)(exp(-(N- i)pa) + h ? exp(-kpa))) 
k=O 

N-i 

C exp(-(N-i + 1)p,) + h ? exp(-kpa),| 
k=O / 

as required. 
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LEMMA 3.4. J0 I1Gj(x)I dx < C. 

Proof. 

' G.'(x) I dx= j G.'(x) dx + E 
I 

GJ(x)| dx. 
1=+ - 

Now Jxi jGj'(X)I dx = -Gj(xj) < C by Lemma 3.2. For the other term, integrate 
(3.5) from x e (xi 1, xi) to xi, where i > j. This gives 

Gj (xi) exp(-ajxi/e) - Gj (x) exp(-d,x/c) 

= (d + 1)(exp(-ajx/e) - exp(-axJ-))/a- 

Solving for Gj(x), then differentiating, gives 

G;'(x) = E-exp(-a,(x, - x)/e)(diGj(x,) + d + 1). 

Thus 

f Gj(x) dx = (1 - exp(-p,)) aI1iG1(x,) + d + 1 |/d 
,-1 

N-i-1 

< C(1 - exp(-P, )) exp(-(N - i')pPa) + h N- exp(-kp-) 
k=O 

by Lemma 3.3, where pf = (h/e) maxa(x), 
[0, 11 

C(i - exp(-p,)) 

x {exp(-(N - i)pa) + h(1 - exp(-(N - i)pa))/(l - exp(-pa))} 

< C { (1 - exp(-p,)) exp(-(N - i)pO) + h } 

since (1 - exp(-p,8))/(1 - exp(-pa)) < /3/a holds for 0 < a < /, as may be easily 
shown using elementary calculus. Now, summing over i yields 

N x E fX Gj(X)I dx 

i=j+ 1 -1 

< C{(1 - exp(-p,))(1 - exp(-(N -j)pa))/(l - exp(-p,)) + 1} 

< C, 

which completes the proof. 

4. A Formula for the Nodal Error. For any j e {1,..., N - 1} the nodal error at 

Xi is 

(4.1) u(xj) - uh(x) = ((u - u )(x), 8(x - xj)) 

- ((U 
-_ Fh)(x), LTG) = 

Ge(UGJ)- e(juhG) 

Now 

je(jhGj) = (f,jG), by (2.3) and Lemma 3.1, 

= (f Gj) + ( j-f, Gj) = (Lu, G.) + (-f,G1) 

= Be(u, GJ) + (f-f, Gj), integrating by parts. 
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Hence, (4.1) becomes 

(4.2) ~U~x)(Xj) - =i( B(u,Gj) _B"(u,Gj) +(f-_f,G) 

= (u',((d - a)Gj) +(f - f,Gj). 

5. Estimation of the Nodal Error. Our approach here is to replace u in the 
right-hand side of (4.2) by an asymptotic expansion. Each of the resulting terms is 
then shown to be bounded by Ch2. 

LEMMA 5.1. Let r E C2[0, 1] be independent of e. Let s E C[0, 1] with s E 

CO(xixi+,) for each i and Jolls'(t)l dt defined. Define r (piecewise constant ap- 
proximation of r) on [0, 1] analogously to the definitions of a- andf. Then 

1(r -r, s) I < Ch2(s1 | s'(t) I dt. 

Proof. For 0 < x < 1 set R(x) = Jox r(t) dt, R(x) = Jox r(t) dt. Then the classi- 
cal error estimate for the trapezoidal rule gives 

I R(xi) - R(xi) I < Ch2Xi for i = 09,. .., N. 

For any x in [0, 1] we have x E [xi, xi+,] for some i. Hence, 

R(x) - Ri(x) = R(xi) - W(xi) - (r(t) - r(t)) dt 

< Ch2Xi+ Ch2, as | r-r| < Ch, 

c Ch2. 

Thus, integrating by parts, 

(r - r, s) = |(R(1) - R(1)) s(1)-| (R (t) -RW(t)) s'(t) dt| 

< ch2 |s(1) |I+ | s'(t) I dt. 

COROLLARY 5.2. i(f-f,G1) | Ch2. 

Proof. Use Lemma 3.4. 
Notation. 0(h') denotes a quantity whose absolute value is bounded by Ch', 

= 0,1,2. 
Applying Corollary 5.2 to (4.2) gives 

(5.1) U(Xj) - iUh(Xj) = (u', (d - a)Gj) + 0(h2). 

LEMMA 5.3 (BERGER ET AL. [1, LEMMA 3.2], SMITH [10]). 

(5.2) u(x) = Bo(x) + C(a(x))'exp(-A(x)/e) + eRo(x), 

where Bo is smooth and independent of e, and A(x) = Jox a(t) dt for 0 < x < 1. The 
function R0 satisfies 

LRO(x) = F0(x, e) on (0,1), 

RO(O) = 0, RO(1) = 70(09 

wherefor e E (0,1], Iyo(e)I < C and IFO(x, -)I < Cfor 0 < x < 1. 
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Remark. By Kellogg and Tsan [7], 

(5.3) R(x(x) I < C(i + e?'exp(-C1x/?)) for O < x < 1, i = 0,1, 

where C1 > 0 is a constant independent of x, h and E. Hence Jo I ER'(x)I dx = 

Jo -a(x)R' (x) + FO(x, E)t < C. 
From Lemma 5.3, 

(5.4) u'(x) = -C- exp(-A(x)/e) + J(x), 

where 

J(x) = B1(x) + ER'0(x) - Ca'(x)(a(x))-2exp(-A(x)l,). 

Substitute (5.4) into (5.1). Note that 

f (JGj)'(x) dx < C 

using JO IGjl < C, IGjI < C, and the above remark. Hence, by Lemma 5.1, we have 

(5.5) U(X1) - iih(Xj) = C(-'1 exp(-A/E), (a - a) G) + 0(h2). 

Lemma 5.1 is too crude for this last integral, which requires some care. 

6. Estimation of (&-1 exp(-A/E), (a - a)Gj). 

(?lexp(-A/E), (a - a)Gj) 
= (E&1(d - a) exp((J -A)/8), exp(-!/?)Gj) 

- -(exp((A-A)/e), (exp(-A/E)Gj)'), on integrating by parts, 

(6.1) = -f' d,-exp(-A(x)/E) dx 

-f| (d?+ 1)E1exp(-A(x)/e)dx from(3.2), 
Jx 

= {Z(1)(Z(xi) - Z(xj)) - Z(xi)(Z(1) - Z(1))}/Z(1) 

by Lemma 3.2(ii), where for 0 < x < 1, 

Z(x) = |1f exp(-A(t)/E) dt, Z(x) = |lfx exp(-Z(t)/,) dt. 
0 0 

LEMMA 6.1. Let x e [0,1]. Set 

-q(x) = J(x) -A(x) and {(x) = -2,q(x) exp(-A(x)/e). 

Then 

(i) Z(x) - Z(x) = fox {(t) dt + (h/l)20(h2). 
(ii) Z(1) - Z(1) - Z(xj) + Z(xj) = Jx ~(t) dt + O(h2), for] = 1,..., N-1. 

(iii) IZ(x) - Z(x)j < Ch2/E. 
(iv) Z(x) = (a(0))l - (a(x))-lexp(-A(x)/e) + ?0(1). 

Proof. (i) 

exp(-I(x)/E) = exp(-A (x )/?) exp(-7q (x)/? ) 

= exp(-A(x)/){1 - (X)/ + (X)) eXP(Y/) 

where y = y(x) is between 0 and -'i(x). 
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Hence, 

(6.2) exp(-A(x)/e) - exp(-AJ(x)/e) 

= (q(x)/e) exp(-A (x)/e) - 2 ( q (X /E)2exp(-O/e) 

where 6 = 6(x) is between A(x) and A(x). Since 6(x) > ax and lI(x)l < Ch/2 
(classical trapezoidal rule error estimate), integrating (6.2) from 0 to x yields (i). 

(ii) Integrate (6.2) from x; to 1, and use (h/-)2exp(-axj/-) < C. 
(iii) Taking one less term in the Taylor expansion above gives, instead of (6.2), 

exp(-A(x)/e) - exp(-H(x)/e) = ('q(x)/e) exp(-w/e), 

where w = w(x) > ax. Integrating this proves (iii). 
(iv) Write Z(x) as fox - (a(t))-'(-a(t)/e) exp(-A(t)/e) dt,integrate by parts, and 

use -A(t) < -at. 
Applying Lemma 6.1, parts (iii) and (iv), to (6.1) yields 

Z(1)(elexp(-A/e), (d - a)Gj) 

= {(a(O)) - (a(1))-'exp(-A(1)/e) } (Z(x) - Z-(xj)) 

-{(a(O)) -(a(xj)) exp(-A(xj)/e)}(Z(1) - Z(1)) + Q(h2) 

(a(xj)) exp(-A(xj)/e)(Z(1) - 2(1)) 

(6.3) -(a(O)) {Z(1) - Z(1) - 
Z(xj) + Z(x1)) + O(h2) 

= (a(xj))' exp(-A(xj)/e) j (x) dx 

-(a(O))-J 1(x) dx + Q(h 2) 

by Lemma 6.1, parts (i) and (ii), 

= (a(xj))-lexp(-A(xj)/,f) | j {(x) dx 

-(a(O))y1fxj | (x1 + x) dx + O(h 2) 

using It(x)I < Ch2/i-2 exp(-ax/e). 

LEMMA 6.2. 

1 
j(xj + x) dx 

- f| C &2q(xj + x) exp{-(A(x) + A(xj))/e) dx + Q(h 2). 

Proof. Let 6(x, xj) = A(x + xj) - A(x) - 
A(xj) 

= Joxi (a(x + t) - a(t)) dt, so 
161 < oxi Cx dt < Cxxj. Now 

exp(-A(x + xj)/e) = exp{-(A(x) + A(xj))/e) exp(-6/e) 

= exp{-(A(x) + A(x ))/e) - 1&'exp(-D/e), 
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where D = D(x, xj) is between A(x + xj) and A(x) + A(xJ), so D >? a(x + x;). 
Hence 

Ix ' (xj + x) dx = f x' &2'q(xj + x) exp{-(A(x) +A(xj))/?} dx 

fl-Xi 2'q(xj + x)6,--'exp(-D/e) dx, 
0 

and the last integral is bounded in absolute value by 

Ch2( x/e) exp(-axj/e) 
I 

' (x/e) exp(-ax/(2e)) e-'exp(-ax/(2e)) dx < Ch2. 

Remark. Consequently, (6.3) becomes 

Z(1)(r--'exp(-A/e), (d - a)Gj) 

(6.4) = E-2 exp(-A(xj)/e)j 
I 

{(a(xj))q1(x) - (a(0))"q (xj + x)} 

.exp(-A(x)/e) dx + O(h2). 

LEMMA6.3. Forj E{1,..., N- 1} and 0 < x < 1 -x, 

|(A - A)(xj + x) -(A -A(x) | Ch2xj. 

Proof. For k = 0,..., N-j-1, write Xk+1/2 for 2(xk + xk+,). For x E 

[Xk, xkk+?) an easy Taylor expansion gives 

(6.5) a(x) - a(x) = (x - Xk+l/2)a (Xk+1/2) + O(h 2). 

Now 

(A - A)(xj + x) -(A -A(x) 

(6 .6) fXk+l(a - + |Xj+k (a + | ' (a 
Xk+1 (a+k 

Here 

(6.7) j X+k (a - ad) |<Ch2 xj 1 

by the classical trapezoidal rule. On the other hand, 

|Xk+ (a - X- (? a 
X+k 

(6.8) f (S - Xk+1/2)a'(Xk+1/2) ds 
Xj+ 

+ (t - 
Xj+k+1/2)a'(x?+k+l/2) dt + O(h3), by (6.5). 

+k 
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But a'(Xj+k+l/2) = a'(Xk+l/2) + xja"(y), where Xk+?12 < y < Xj+k+?12. Substitut- 
ing this into (6.8), then letting t = s + xj to combine the a'(xk+l/2) terms, yields 

Xk+1 ( - Xk+1/2)a'(Xk+l/2) ds + f (S - xk+l/2)xja (y) ds + 0(h 3) 
Xk Xk 

= xjO(h2) + 0(h3). 

Together with (6.6) and (6.7), this proves the lemma. 
We now have, by Lemma 6.3, 

(a(xj))71q(x) -(a(O))Y'?(xj + x) 

= (a(xj))'(a(O))Y1{(a(O) - a(xj))r,(x) + a(xj)(-q(x) - -q(xj + x))} 

= xjO(h2). 

Consequently, from (6.4) 

( Z(1)(&'1exp(-A/E), (a- a)Gj)I 

(9 Ch2(xj/c) exp(-axj/e) ' 1-exp(-ax/e) dx + 0(h 2) < Ch2. 

It is easy to see that Z(1) is bounded below and above by positive constants 
independent of h and e. Thus, combining (5.5) and (6.9) proves 

THEOREM 6.4. For 1 < j < N - 1, Iu(xi) - h (x1)I < Ch2. 

Remark. The discretized Green's function technique can be used to give a quick 
proof that schemes similar to Il'in's [6] for (1.1) are 0(h). For example, if in Section 
2 above we define di = a(xi) and fi = f(xi), i = 1,..., N, we only need Lemmas 
3.1 and 3.2, Eq. (4.2), and Jl Iu'(x)I dx < C to get 0(h) nodal accuracy. In fact, 
the same simple argument proves 0(h) accuracy for any scheme generated using 
piecewise constant approximations d, f of a, f for which IIa - dal, < Ch, Ilf - flloo 
< Ch. 
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